A Predictive Model for Cardiovascular Diseases Using Data Mining Techniques
* Corresponding author
Abstract
In many countries, heart disease is the main cause of mortality. Heart diseases are often identified by doctors based on recent clinical trial results and their prior experience treating patients who present comparable symptoms. Patients with heart disease require early diagnosis, prompt treatment or constant monitoring. The purpose of this study is to look into the numerous data mining technologies that have recently been developed for predicting heart disease. According to observations, 15 feature neural networks outperform all other data mining methodologies. Another finding from the analysis is that decision trees using genetic algorithms or feature subset selection have good accuracy. The results illustrate that the same classifier can occasionally produce precise results that change depending on the data mining approach used. According to the findings, a neural network with 15 characteristics has so far achieved a maximum efficiency of 100%. Decision Tree, on the other hand, has also done well, with 98.65% accuracy and 15 features.
Imprint
Avneesh Kumar, Santosh Kumar Singh, Shruti Sinha. A Predictive Model for Cardiovascular Diseases Using Data Mining Techniques. Cardiometry; Issue 24; November 2022; p.367-372; DOI: 10.18137/cardiometry.2022.24.367372; Available from: https://www.cardiometry.net/issues/no24-november-2022/predictive-model-cardiovascular