A distributed e-health management model with edge computing in healthcare framework

Darpan Majumder¹, S. Mohan Kumar²

¹Research Scholar, Department of Information Science and Engineering, New Horizon College of Engineering Research Centre, Visvesvaraya Technological University (VTU), Bangalore
²Dean and Professor, Department of CSE, Nagarjuna College of Engineering and Technology, Bangalore

*Corresponding author:
reach2darpan@gmail.com

Abstract

Edge healthcare system is recognized as an acceptable paradigm for resolving this problem. The IoMT is divided into two sub-networks - intraWBANs and beyond-WBANs - based on the physical bonds of WBANs. Given the features of the healthcare systems, medical emergency, AoI and power deprecation are the prices of MUs. Intra-WBANs, a cooperative game shapes the wireless channel resource allocation problem. The Nash negotiation solution is used to get the unique optimum point in Pareto. MUs are regarded reasonable and perhaps egoistic in non-WBANs. Another non-cooperative activity is therefore developed to reduce overall system costs. The assessments of the performance of the system-wide cost and of the number of MUs gaining from edge computer systems are done to illustrate the success of our solution. Finally, for further effort, numerous barriers to research and open questions are highlighted.

Keyword

Smart healthcare, Artificial Intelligence, Edge computing, Fog computing

Imprint

Introduction

The increasing burden of clinical illnesses and ageing populations mean that illness prevention is an essential healthcare necessity. Avoidance is not only described as a means of maintaining a better environment but also a technique of maintaining severe circumstances by means of regular exercises, nutrition management and periodic prevention. A growing number of chronic diseases and lack of treatment must be addressed by the future health care industry to meet patient needs[1]. The need of rapid, thorough and exact eHealth and smart health care integrating many forms of physical and medical information to identify the virus has been underlined lately by COVID-19.

The integration of modern technology in safeguarding policies and procedures can assist to identify possible health issues quickly and enable suitable actions such as simultaneous monitoring of treatments and the preparation of fresh evaluations to be planned. In 2019, the global intelligent health market is projected to reach USD 143.6 billion, an increase of 16.2% on average between 2020 and 2027. Smart healthcare is the framework for health systems that use technologies like wearable devices, IoT and the mobile Internet to enter health data and link individuals, resources and organizations. Smart healthcare means that we can conveniently access medical documents.

Various players, including medical practitioners, personnel, hospitals and research institutions are involved in intelligent medical therapy. It includes a dynamic environment with various aspects such as illness prevention and detection, evaluation and evaluation, healthcare administration, patient decision-making and medical research. Smart health services include automated networks such as IoT, mobile webs, cloud computing, big data, 5G but also artificial intelligence (AI), as well as advanced biotechnology.

With computer technology, automation and automated signal processing, sensors were increasingly integrated in various systems of our life. Data generated by sensors can assist physicians to identify crucial circumstances quicker and more reliably and can help patients learn more about their symptoms and potential treatments. Intrusive and non-invasive equipment – from gadgets to temperature reading, to dialysis process control – give patients and the health sector with personal and multimedia data and
support. Signals such as electrocardiogram (ECGs), electroencéphalogram (EEGs), electroglotonograph (EGGs), Electroaculogram (EOGs), Electromyogram (EMGs), body’s temp, blood pressure (BP), as well as heart rate arrive in the form of 1D and 2D signals. Medical signals are also given. These medical signals can be used to monitor a patient with a health care monitoring system.

The IoT begins to link physicians and consumers slowly with the healthcare system. Echoes, BP readings, glucose sensors, EEGs, ECGs and more continue to investigate the well-being of individuals. Critical circumstances such as follow-up visits to doctors. Many health centres started using smart beds to detect the motion of a patient and adapt the bed to the right corner and position automatically. The Medical Things Internet (IoMT) pertains to the IoT utilised for medical applications. The IoMT can play an essential role in the development of a fully integrated health environment.

In rare cases, depending on only one form of medical information may not comply with the diagnostic standards of a certain condition. Multimodal medical signals for improved diagnoses can thus be used. Communications can be merged at several levels, such as the level of data, the level of function and classification[3]. Many problems may arise while fusing signals. Signaling from several sensors, data caching, feature standardization, and classification fusion comprise these challenges[4]. Together with advancement of Machine learning and artificial intelligence (ML) techniques in the field of deep learning (DL) as well as wireless local area network technologies (wLANs)[5] intelligent health care has been transformed to provide patient and stakeholder satisfaction.

Due to the high computational performance of these technologies, high data volume, the accommodation of several terminal units and the addition of 5G and beyond 5G wireless technology, the medical industry has been able to manage numerous medical indicators from the same user – which at the time increase disease detection and prediction accuracy. Healthcare now employs IT to create intelligent and accurate treatment solutions that accelerate health diagnosis. Smart frameworks and automatic diagnostic medical diagnostic systems provide services in many contexts and situations such as hospitals, workplaces and homes, and transportation aids, which reduce the cost of doctor visits substantially and improve patient care overall[1].

There is a requirement for Intelligent health as the number of IoT healthcare devices deployed globally estimates to have reached over 162 billion as of 2020, IoT sensors and application for general healthcare having drastically changed the approach to healthcare[1]. Smart IoT sensors wearable and embedded may gather data on the basis of user behaviors, mobility, and device use in real-time. Such samples are gathered and processed with ML or DL techniques to disclose hidden patterns in the data as well as track users to make a diagnosis and warn against critical condition. Cloud-based frameworks, which frequently use Big Data techniques, can achieve reliable and correct results for general IoT applications, and require quick reactions[2]–[4].

This data can be collected and processed using DL techniques. However, cloud-based implementations can have a major negative impact when there is a network failure or bandwidth delay, and this can result
in health emergencies or even life loss[5] for critical medical IoT-based applications that require greater accuracy, reliable responses and robust behaviours. There has recently been a rising interest in advanced cloud architectures using cutting edge technology and cloud technology. The main aim of the combination is to maximise advantages in data gathering, interpretation, processing and analysis by the edge and fog computing capacities [6].

Such designs provide potential solutions to improve dependability and adaptability in healthcare dispersed applications, as smart device, sensor mapping and resource management are major concerns of intelligent IoT healthcare systems[5]. The objective of the study is therefore to show the advantages of edge computing for smart solutions for the distribution of smart IoT healthcare sensors and analysis. Edge intelligence may be utilized on intelligent appliances with sensors on them and on appliances on gateways near intelligent sensors: smart wearable equipment with sensors, such as smartphones and smart watch systems and gateway equipment such as micro-constrators are edge nodes. Fog computing may be deployed on different networks and incorporate powerful, bigger equipment like personal computers and smart sensor devices that are more remotely located.

Close proximity of users to sensors is frequently utilised for providing health services with better availability, less latency, and local awareness [7], both edge and fog computing architectures [5]. Many academics have suggested strategies based on hierarchical computing for the distribution and allocation of inference-based jobs across border and fog nodes to use such techniques as DL and ML, which may greatly enhance computing resources and computational capacities of edges. As the Internet of Things (IoT) develops rapidly, various museums and equipment for all-embrace services are connected. An Internet of Medical Things (IoMT) is an important application[1].

In current culture, MUs are hard on time for medical exams which encourage the progression of chronic illnesses, suffering from the dreadful stress of their everyday lives. Furthermore, the shortfall in wireless and local computer channels cannot meet the transmission requirements of explosive MUs and hinder future development of IoMTs. IoMT combines Wireless Body Area Networks into IoTs to overcome the hurdles. IoMT is possible to implement remote surveillance by the deployment of body sensors on MUs through extensive networks of health care. Unlike conventional therapy, IoMT enables MUs to travel freely without being restricted.

Despite the fact that different body sensors can monitor all-embracing medical data, explosive MUs – particularly people – are overwhelming existing healthcare facilities because of economic growth and population ageing. For medical testing, local computer resources are not adequate, given by mobile devices, as they are time-sensitive. The development of edge computing is really a viable paradigm to address this shortcoming. The burdens of edge computer and the latent workflow can be considerably reduced if the raw data monitored is offloaded to the edge servers.

In general, MUs concern a lot about diseases that might have significant repercussions and hospitals examine MUs all day long to prevent information which is also known as hunger for information from becoming obsolete. There are therefore numerous problems facing the health system. First, severe illnesses should be allocated high transmission priorities. Secondly, all sorts of data collected, including general illnesses, have to be updated on time in order to prevent hungering and concealed threats from information. Thirdly, the maximum displacement of hardware in the healthcare system must be considered without a constant power source, including body sensors, local devices, and edge servers.

This article builds an edge computer-based IoMT health system. The considered IoMT is devised into two sub-networks, namely intra-WBAN and outside WBANs, on the basis of the physical boundaries of WBANs. Local devices have been designated as a gateway and connect between two subnetworks with both the routing and the calculation capacities. In intra-WBAN, local equipment assigns body sensor transmission priority by managing the bandwidth in the Multiple Access orthogonal frequency division. The Nash negotiation solution is used to establish the best timetable. MUs opt to examine the raw observed data in addition to WBANs or to download it to edge servers. By using the Multiple Access Non-Orthogonal (NOMA) technology, the dissipation of energy and the suffering of interference by the channel multiplexing are compensated for. 5G communications use millimeter waves, and the transmission frequency is high, as opposed to cell communications. There are a large number of MUs split geographically, allowing a few MUs to download every edge computing server.
Since MUs are practical logical, a non-cooperative design was influenced.

Literature Survey

The IoT frameworks for edge-based medical care usually comprise remote monitoring systems which use several types of smart sensors for diagnostic, sensitive and preventative healthcare systems. Fog computing nodes act as local servers in recent studies: collect, analyse and process IoT sensor health data, and provide fast-response services. Health experts have been investigating for many years methods for remote patient monitoring and the transmission of health reports to give doctors with patient data in real time.

Earlier researchers like Liu et al. mainly recommended basic computers and MSM for patients, such as ECG and heartbeat detectors to warn against the heart rate or to forecast and filter crucial circumstances. That physiological information is then gathered for further analysis and processing via intelligent ECG sensors. Recent progress in IoT technology has opened the way to smart solutions that benefit mobile applications and system designs. The solutions such as chronic disease monitoring, epidemic surveillance and management, geriatric and paediatric care and health and fitness management aim at solving health problems at different levels.

Many of the research papers have recently suggested IoT health systems that focus on the access to and diagnosis of critical health conditions in physiological health. For mobility and cardiac data monitoring, a wireless multimedia sensor network is used for people inside living areas. The edge layer allows family members and health professionals to get health warnings on their mobile phones. Sudden variations in the sensor readings that identify falling and critical states of health early are computed. Such IoT smart health service to monitor important cardiovascular diseases in patients utilising ECG sensor datasets was also proposed. The system interactions were done by means of a TV interface.

Researchers have been exploring Bluemix Cloud-based information collection and storage technologies. They have used IBM Watson IoT systems to enable health specialists to obtain analytical conclusions remotely utilising health data. In another study, researchers suggested an embedded fever diagnostic system to monitor the temperature of the patient in real time. The suggested IoT-based ECG telemetry system provides a real-time health evaluation on a smartphone. Different physical activities on the proposed system have been assessed to demonstrate their utility. Field sensors may be used to capture physiological data for static monitoring, and can be used to detect multimodal activity.

In one investigation for this researcher, audio, video and motion information was obtained using a smartphone, smart-watch sensors and a camera. Indeed, the cloud architecture was utilized for fog computing where activity detection, data preprocessing, and locating were carried out utilizing a local gateway. The activity identification of similar research with fog-based frameworks has been proposed. Due wearable body sensors were used to identify 12 human activities. These researches employed an LSTM-based RNN model which was used in the local fog nodes whereas various kinds of motion monitoring sensors were proposed and activity categorization was based on SVMs and rands.

Recent research has investigated edge-based ML models and incorporated the analysis of wearable sensors on physiological health data. The paper explored the topic of the identification of anomalies by suggesting an edge stream computing architecture. The HTM algorithms were disseminated and implemented in classification at the edge nodes. Another research recommended the use of an LSTM-based RNN on the edge nodes in a case detection model. A recent study [8] suggested a multi-access edge architecture-based EEG categorization method. The authors built essential modules on edge nodes to meet the necessary criteria such as robust detection and categorization of features, data decrease and quick processing. They also compared the findings with approaches like nearest neighbors, naive bays and random forests to evaluate the performance of the project.

A novel architecture based on hierarchical computing was presented by another research study in order to classify abnormalities in ECG data. The authors employ an IBM version of MAPE-K design in order to distribute these calculations in the layers of cloud, fog and edge. Four major processing units comprise the architecture. To connect sensors to the border, a monitoring module provides all preprocessing, data collecting and storage. A module for analyzing the major processing and computing activities is then built, such as model trainings, and deployed in the cloud. Thirdly, the Planning module that is placed at the edge of the
analyzer module. This module operates the classification classifier and makes choices. Two methods were evaluated, SVM and DL.

There have been several recent studies in situations in which researchers have developed edge rehabilitation methods to monitor health-related problems or infections following therapy. One such research suggests a health monitoring system for an orthotic by following a patient's stride and temperature for an amputated leg. They used cellphones for collection and transport of health information to fog nodes using the edge nodes, in which ML algorithms for the categorization of features were applied. Another comparable research suggested accelerometer IoT-based arm kinematics.

Several research projects have suggested IoT-based intellectual systems for speech synthesis and voice pathology. Smartphone and wearable sensors were used to study voice-related illnesses and disorders and send them to the cloud-base module in which a high-end learner was being used to grade functionality extraction jobs. Dubey et al. fog computing was used for teletherapy to Parkinson's sufferers. The audio data were gathered using wristwatch sensors and transmitted to fog nodes for the acoustic detection of features and subsequently to the cloud for further categorization. IoT smart health systems have given several possible options for the treatment of infectious diseases in the realm of diagnosis and therapy.

Such systems have provided the possibility for real-time processing, position detection, motion information and many kinds of data merger. Epidemic illness detection and diagnostics systems have become state-of-the-art with the support of biosensors and location and environmental sensors. In instances when viral infectious illnesses must be found in the early stages so that patient treatment may be timely, the necessity of such systems is all the more obvious. One research suggested a Chikungunya diagnostic system employing fog computing to analyze symptoms associated with illness, including environmental data. The technology also warned users using Google Map data to regions susceptible to illness.

Another study presented a diagnostic approach to prevent the Zika diseases from spreading through mobile cloud computing. Fog nodes were utilized to preprocess and for the processing, storage and analysis of findings, a cloud layer was deployed. The current situation of COVID-19 has significantly transformed the worldwide environment, thus intelligent health systems require the hour. For exact screening, keeping a social distance of 1 meter, and diagnosing symptoms such as fever, cough and bodily discomfort, many IoT-based smart architectures are suggested. An automotive triage approach was suggested based on real-time edge layer DL methods. For front area detection and temperature measurement using an infrared camera, the DL is utilized.

In other research, a multimodal DL system that used smartphone sensors to locate users and to alert them about locations susceptible to risks has been suggested. At any time, a huge volume of data, particularly in an IoT network, is created. Therefore, a significant quantity of data needs to be processed intensively. Many approaches of Big Data Analytics for real-time IoT frames were suggested in the literature. The QoS need was not addressed correctly. Machine and DL technology interact alongside IoT architecture to increase the capacity for Big Data Processing and sophisticated DL models are particularly strong for the management of such data.

For several forms of medical large data, including data of wearable sensing devices and HER data, DL have been utilized by researchers. Some of the large data uses in IoT healthcare. The major IoT healthcare systems data analytics apps have changed statistical analysis and reliable health data tracking. The sensor data of the wearables is constantly recorded such sleep,
workout, hiking, cardiac data, etc. New varieties of IoT intelligent sensors are also able to follow heart rate, glucose, pulse, etc. Big data analysis allowed patients to get out of healthcare and diagnostics, as well as enhanced healthcare at home. Big evidence also benefited IoT healthcare systems by lowering personnel and travel costs overall. It has enabled health professionals to locate and provide particular treatment for high-risk patients. It has also reduced mistakes since human elements increase faith in artificial intelligence. Advanced AI systems such as IBM Watson are able to anticipate illnesses by searching enormous quantities of health data in seconds. The smart health sector may thus make quick progress with large-scale data and with AI and IoT.

Proposed System

This image shows the model of the system of our researched edge computerized health care. It has four main parts, namely MUs, local appliances, edge computers and hospitals. MUs are equipped with heterogeneous body sensors which monitor and send raw medical data at the appropriate gateway. Interference is caused by MUs occupying the same subchannel. The local device then chooses that the medical analytical work is done or downloaded to edge servers through local computing. The medical report is finally forwarded to the hospital. The monitoring data have three key attributes: medical emergency, AoI and energy depreciation. The medical intensity index of the health-care data assesses medical emergency. Heart rate data and blood glucose data are intuitive to the medical emergencies of the patient. Data may be classified in discrete classes accordingly on the basis of the IEEE 802.15.6 standard. The idea of defining medical emergency is fundamental. Given that the attributes are the same, high priority of transmission should be given to health data with significant medical emergency. Medical information is often time sensitive and is severely restricted in the utility of the outdated monitored data. Using body devices to sense immediate data throughout the day, real-time health care is ideally attained.

Continuous monitoring, however, demands adequate energy supply and processing capabilities, limited by WBANs. The AoI paradigm is therefore used to assess the authenticity of the health data obtained through portals. When monitoring body sensors, all patient information is timed. When wireless channels are assigned, sensors begin to monitor the data; they are unwanted otherwise. In these instances, caching for sensors is not required and the AoI value for all data numerically corresponds to the queuing delay.

The system-wide dispersion of energy without reliable energy supplies impacts the lifetime of the entire healthcare system as well as the performance. Sensors use energy in intra-WBANs to transfer relevant information to the local device. However, transmission from edge computer to cutting-edge servers as well as calculating health analysis activities caused the energy dissipation in outside the WBAN system. The aim of our health system is to minimize systemwide costs, as a linear combination of the urgency of medicine, AoI and the waste of energy.

Bandwidth distribution profile of the wireless channel in intra-WBANs and the strategy profile unloading all local devices in beyondWBANs. The overall system costs C are the function of the two profiles above. The stated problem of optimization is subject to the following restrictions in the context of practical healthcare. The AoI cannot exceed the appropriate threshold of the health data collected by the body sensors. Unable to overwhelm edge servers. Intra-WBANs, the assigned bandwidth cannot be more than the total bandwidth. Each job can be processed only through edge computer or edge servers.

\[
\max \prod_{n=1}^{M} (U_m - \hat{U}_m)
\]

The cost of each MU varies on its own and on other methods due to the sharing of transmission and computing resources. In particular, in cases when excessive MUs opt to load jobs onto edge servers the pace of the transmission may be lowered because of significant interference and because edge servers are overloaded, the computational latency cannot be achieved. In this situation, local computing is ideal for MUs. Systematic costs are determined by the allocation of bandwidth and the discharge of strategy profiles. Bandwidth allocation profile is dependent on constraints 1 and 3. Boundaries 2 and 4 rely on the strategy profile for offloading.

The optimization issue is separated into two subproblems based on two sub-networks, namely the problem of bandwidth allocation (BA) in intraWBANs and the Offloading Decision (OD) problem in outside WBANs, in order to disconnection such interdepen-
dependence functions between MUs. Intra-WBANs, body sensors are assigned wireless channel resources for the transmission of monitored information in health care to gateways. Body sensors detect and communicate different medical data to local devices. Each body sensor gathers relatively modest data sizes of the health monitoring packets and minimal bandwidth needs. The bandwidth is therefore OFDMA distributed to sensors.

Varying sensor types have different needs for bandwidth. The main issue for the BA problem is the data attribute and the energy waste of the sensors in transmission without medical analytical duties. The BA issue may be revised as a cooperative game in which body sensors reduce the cost of intra-WBANs by negotiating, as body sensors work together to service MUs. In particular, sensors strive to minimize their bandwidth resources costs. Unlike non-cooperative games where people are rational and egoistic, sensors are intended to reach Pareto as optimally as possible in the agreed negotiation match, and the cost can be correspondingly minimized in intra-WBANs. There is a discrepancy despite sensors cooperating, and after that, a bargaining match would be withdrawn.

The discrepancy point for the BA issue indicates that each sensor has at least the assigned bandwidth. The AoI of its monitoring data exceeding the threshold would be the bandwidth assigned to one of the sensors less than the discrepancy point. The medical information is outdated. It can thus be highly expensive and cannot achieve the optimum Pareto. The minimal bandwidth assigned for each sensor may be
determined based just on AoI restriction. Each sensor is described as the usefulness of intraWBANs, as the inverse of their costs. Then the relevant minimal utilities may be determined in view of the discrepancies in all sensors. In the negotiating game, the feasible utility set is the joint set of all MUs utilities, where each MU has to have a greater utility than its lower limit.

Overall, in the negotiation game there are more than two sensors, which result in endless Pareto optimum locations. The widespread Nash negotiating solution is used to determine the unique optimal Pareto point in order to tackle this challenge. In addition to WBANs, gateways pick downloading techniques with the purpose of lowering MU costs, including transmission energy consumption between gateways and edge servers, and the calculation of medical test tasks. Taking into account the reason and autonomy of MU, the OD issue may also be recast as a non-cooperative game. The costs for MUs not only rely on their choices, but also on other choices.

The primary variables affecting transmission and calculation energy consumption are the interruption and the number of MUs which occupy the same edge server by describing the transmission model, respectively. In addition, the number of MUs on the same edge server influences the interference encountered. Thus, by replacing its original utilities function with its suffering interference for the MUs, the formulated non-cooperatives may be converted into an analogous mode. Note that when MUs decide to do medical analytic activities via local computing, there is no transmission usage. The associated utility is described as the threshold for interference, which exceeds the cost of discharging edge servers. To establish that the uncooperative game has at least one Nash equilibrium and is a weighted potential game.

The sophisticated structure is proportionate to the changes in the potential function when a MU alters its approach. The modified non-cooperative game is based on the notion of a weighted potential game with at least one pure NE strategy. A health monitoring method based on decentralized edge computing is therefore presented in order to reduce systemwide costs with the optimum offloading strategy profile. All MUs are initialized to zero, which is to say, local computing is their preliminary techniques. A proposal for logging strategy updates requests issued by the MUs is maintained in edge servers. When the medical analysis jobs are downloaded to edge servers, all MUs compute their suffering interference.

As local computing is the initial technique, the first decision slot has no interference. The threshold is then calculated and the resulting interference is compared with that for each MU. If the impairment is less than the criterion, the energy demand can be decreased from local computers to edge servers. Due to other MUs’ strategic profile, MU has the best answer and offers an updated recommendation for strategy. In the proposal set, all requests are documented. This process is also known as a way to improve. The MU would retain the existing approach if the interference is more than the threshold. MUs fight for this update chance in the proposal.

$$\Phi(a) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \in A_i} S_i S_j + \sum_{i=1}^{N} S_i \Psi_i$$

One is randomly chosen to alter its approach, and other MUs maintain decisions. Based on the characteristics of the weighted potential scenario, following finite improvement routes, all MUs can achieve a pure NE strategy. Our suggested DEHM method is dominated by the time complexity of calculating the optimum answer. MUs sort all edge servers depending on the associated price to calculate the most advantageous edge server. Where K and l be the amount of edge servers and the number of algorithm convergence decision slots.

Results and Discussion

Consider a health surveillance edge computing situation in which 30 MUs and 5 edge servers are available. Medical analysis services can be provided via body sensors that are placed on MUs to monitor the healthcare data and edge servers. Randomly picked for [1000, 3000] KB to [100, 1000] are the data size and necessary CPU cycles for every packet. Local endpoints and edge servers can be calculated at 2 GHz and 30 GHz respectively. Local devices’ transmission power is 100 mw and the frequency is –100 dBm.

The system’s systemwide cost and the number of museums that are supported by edge computing are two performance measures. The efficiency of our suggested DEHM algorithm is demonstrated by three approaches for a performance comparison. Due to the fact that jobs might be deactivated to the edge servers, MUs with risks are unwilling to undertake medical analysis using local computing services. Myopic MUs will randomly unload their duties to the edge server and disregard other MUs’ interference. It is a central-
ized method that programming data transmission resources in such a manner that is NOMA.

The achievements of SDMA are close to ideal exhaustive search by gathering global information. The massive influx of MUs results in additional health data to be communicated and processed. Thus, with the increasing numbers of MUs, the system-wide cost in IoMTs grows. In comparison with all the MU schemes of LC and EC, our suggested DEHM algorithm may cut costs by an average of 36 and 38 percent. The highest limit of significant degradation of the DEHM method is about 13 percent compared to the centralized SDMA method. Since global information is required for the SDMA algorithm to match, this not only generates additional overhead transmission but also privacy disruption.

The centralized scheduling may differ from the MUs worried about the privacy question. In example, if the quantity of MUs is very small the cost of LC is larger than that of EC. This is due to the lack of compute resources on edge servers, which can finish medical analytic jobs with a limited time limit when there are MUs that offload work to edge servers. However, costs for the EC approach grow more quickly and exceed the LC costs at 35 mm, as an excessive number of micro controversies leads to serious interference with transmission and overburden edge servers. Latencies in transmission and computation are both unwanted. When the data amount rises to 3 MB the decreased ratio drops to 32 percent. That's because a big amount of healthcare data enhances the strain on edge servers and the cost of calculations is higher. In addition, by reducing the transmission energy dissipation, the LC technique can minimize systemwide costs.

In conclusion, the DEHM algorithm can be improved by all MUs, which can effectively tackle the performance of the centralized SDMA algorithm, then the comparative techniques of LC and EC. Figure shows the variation in the number of edge computer MUs. With the growth in the number of MUs who benefit from edge computing, the number of MUs is rising and the file size of health care packages is falling. It's because virtual machines may supply relatively modest numbers of MUs with relatively late medical analytic services and ensure AoI from controlled health data. The figure demonstrates that the growth in data size increases the costs.
Consequently, it lowers the amount of MUs that benefit from edge computing. Note that, with the expansion of the number of MUs benefiting from EC scheme edge computing, the number grows initially and then goes down to 0. Buoyed by excessive MUs sharing resources which still surge the edge computing computers, and the corresponding number of MUs which benefit from edge computing falls fast, while the calculation resources of edge servers are more than sufficient for local devices. The figure compared to the centralized SDMA Scheme the temporal complexity of our suggested DEHM algorithm.

As the DEHM method may decentralized reach the NE, the convergence time might be cut by an average of 78% compared to the SDMA algorithm. Furthermore, the total percentage of SDMA convergence times rises quicker than the DEHM method, as the frequency of MUs grows. It shows that DEHM is performing well while the number of MUs is increasing. The majority of current efforts concentrate on static or semi-static health conditions, where the delivery of medical data is determined in advance. The decision-makers are supposed to get precise information about the medical analytic jobs and the computational functions of edge servers properly. Nevertheless, edge servers and jobs in the field of medical analysis are diverse and hard to obtain.

Furthermore, work execution time doesn’t have a linear dependence on the computer resources used, which raises forecast complexity using historical data. Machine learning has done a lot in computer vision, processing of natural languages, etc. It remains difficult to use for modelling stochastic procedures and implementing dynamic healthcare games. Many researchers have examined the topic of unstable power generation in IoMTs in energy harvesting. Energy should be provided in conjunction with the medical analysis duties with the growth of communication techniques. For these reasons, a reorganization of the data size and transfer rate requires new transmission methods.

Furthermore, the energy discharge of edge servers can indeed be substantially decreased, and the accompanying energy queue must also be restructured. It is also important considering the interplay between different IoMTs. The burdens of different IoMTs are separate as MUs are not uniformly distributed. Excessive workloads might be sent to adjacent idle servers by overloaded edge servers to carry out load balance.

Wireless power transmission can also create an energy balance across IoMTs, increasing the life of body sensors in overburdened IoMTs. In addition to improving spectrum efficiency and reducing the maintenance cost of equipment, the combined transmission of energy and information.

Figure 8. Different MU based analysis

Unlicensed access to IoT systems can lead to significant health concerns and dangers to patients’ private information. Linked computers, including compilation, aggregation, patient knowledge recovery and cloud communication. The sort of system is prone to clones, RF-jamming or cloud polling. Throughout the cloud survey, the communication is sent such that a person in the center may immediately inject orders to a computer. The literature seldom discusses the actual applicability of IoMT enabled healthcare systems. The major worry is that company ownership and not publicly accessible statistics are the most important.

Figure 9. Healthcare data packet analysis
In actuality, an efficient deployment and use of data fusion will make it possible to measure and assess daily physical activity using low-cost monitoring that will make chronic illnesses simpler and better to avoid. We take it as a significant prospective path for future study to store medical data in public archives with adequate protection and to explore existing data fusion techniques using this public data. Fog-based frameworks gave the greatest answer to non-dynamic monitoring settings, where local servers supplied GPUs to satisfy the needs of intensive ML workflows.

However, limited-power edge devices have been utilized for dynamic activities where resource optimization and power conservation are shown. Stream CC was utilized at an adjacent level to render the deduction process parallel across the many edge nodules and to maximize computation and operational requirements for integrated sensor devices ML methods are used, using lightweight architectures. For restricted use of resources and low power edge nodes without compromising performance, sophisticated mobile DL architectures have thus been adapted.

Conclusion

There is also a range of IoT, IoMT, healthcare, AI, edge as well as cloud computing books at varying speeds and using different methods in the intelligent health care sector. However, to the best of our knowledge the IoT, IoMT, AI, health signal usage and fusion, edge and cloud computing, privacy and security of the intelligent health system were not thoroughly and systematically analyzed. In intra-WBANs, the problem of wireless channel allocation is modelled as a negotiating game, and by using Nash negotiations, the unique Pareto optimum point is calculated. In other than WBANs, a non-cooperative game is the problem of offloading decision. The NE is presented for a potential game-based DEHM algorithm. The results of the performance evaluation show our algorithm’s efficiency regarding system-wide costs and the amount of MUs benefiting through edge computing.

Statement on ethical issues

Research involving people and/or animals is in full compliance with current national and international ethical standards.

Conflict of interest

None declared.

Author contributions

The authors read the ICMJE criteria for authorship and approved the final manuscript.

References

